精英家教网 > 高中数学 > 题目详情
设函数的定义域为D,若所有点(s,f(t))(s,t∈D)构成一个正方形区域,则a的值为( )
A.-2
B.-4
C.-8
D.不能确定
【答案】分析:此题考查的是二次函数的性质问题.在解答时可以先将问题转化为方程,因为一个方程可以求解一个未知数.至于方程的给出要充分利用好“构成一个正方形区域”的条件.
解答:解:由题意可知:所有点(s,f(t))(s,t∈D)构成一个正方形区域,
则对于函数f(x),其定义域的x的长度和值域的长度是相等的,
f(x)的定义域为ax2+bx+c≥0的解集,
设x1、x2是方程ax2+bx+c=0的根,且x1<x2
则定义域的长度为|x1-x2|==
而f(x)的值域为[0,],
则有
,∴a=-4.
故选B.
点评:本题考查的是二次函数的性质问题.在解答的过程当中充分体现了问题转化的思想、解方程的思想以及运算的能力.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•北京模拟)定义函数y=f(x):对于任意整数m,当实数x∈(m-
1
2
,m+
1
2
)
时,有f(x)=m.
(Ⅰ)设函数的定义域为D,画出函数f(x)在x∈D∩[0,4]上的图象;
(Ⅱ)若数列an=2+10(
2
5
)n
(n∈N*),记Sn=f(a1)+f(a2)+…+f(an),求Sn
(Ⅲ)若等比数列bn的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市高三(上)数学会考练习试卷(三)(解析版) 题型:解答题

定义函数y=f(x):对于任意整数m,当实数x时,有f(x)=m.
(Ⅰ)设函数的定义域为D,画出函数f(x)在x∈D∩[0,4]上的图象;
(Ⅱ)若数列(n∈N*),记Sn=f(a1)+f(a2)+…+f(an),求Sn
(Ⅲ)若等比数列bn的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题文科数学试卷(解析版) 题型:填空题

设函数的定义域为D,若存在非零数使得对于任意,则称为M上的高调函数。

现给出下列命题:

①函数为R上的1高调函数;

②函数为R上的高调函数

③如果定义域为的函数高调函数,那么实数的取值范围是

其中正确的命题是        。(写出所有正确命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省皖南高三上学期联合测评考试理科数学(解析版) 题型:选择题

设函数的定义域为D,如果对于任意的,存在唯一的,使得成立(其中C为常数),则称函数在D上的约算术均值为C,则下列函数在其定义域上的算术均值可以为2的函数是    (    )

A.   B.   C. D.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省高三第六次模拟考试数学文卷 题型:填空题

设函数的定义域为D,若存在非零实数,使得对于都有,则称M上的高调函数. 现给出下列命题:

①函数R上的1高调函数;

②函数R上的高调函数;

③若定义域为的函数上的高调函数,则实数的取值范围是.

其中正确的命题是          .(写出所有正确命题的序号)

 

查看答案和解析>>

同步练习册答案