精英家教网 > 高中数学 > 题目详情

已知a>0,a≠0,函数y=ax与y=loga(-x)的图象只能是

[  ]

A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,a≠1,命题p:“函数f(x)=ax+1在(0,+∞)上单调递减”,命题q:“关于x的不等式x2-ax+
18
<0
有实数解”,若p∧q为假命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)已知a<b,则在下列的一段推理过程中,错误的推理步骤有
.(填上所有错误步骤的序号)
∵a<b,∴a+a<b+a,即2a<b+a,…①
∴2a-2b<b+a-2b,即2(a-b)<a-b,…②
∴2(a-b)•(a-b)<(a-b)•(a-b),即2(a-b)2<(a-b)2,…③
∵(a-b)2>0,∴可证得 2<1.…④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

给出下列四个式子(已知a>0且a≠1,x>y>0)①logax•logay=loga(x+y);②logax+logay=loga(xy);③数学公式;④logax数学公式.其中正确的个数是


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    3个

查看答案和解析>>

科目:高中数学 来源:松江区二模 题型:解答题

已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

同步练习册答案