精英家教网 > 高中数学 > 题目详情

设函数f(x)=2x3-3(a-1)x2+1,其中a≥1,求f(x)的单调区间.

答案:
解析:

  解:由已知得(x)=6x[x-(a-1)].

  令(x)=0,

  解得x1=0,x2=a-1.

  (1)当a=1时,(x)=6x2,f(x)在(-∞,+∞)上单调递增.

  当a>1时,(x)=6x[x-(a-1)].

  (x)、f(x)随x的变化情况如下表:

  从上表可知,函数f(x)在(-∞,0)上单调递增;在(0,a-1)上单调递减;在(a-1,+∞)上单调递增.


练习册系列答案
相关习题

科目:高中数学 来源:黑龙江大庆实验中学2008-2009学年上学期高一期中考试(数学) 题型:013

设函数f(x)=2x+3,若g(x+2)=f(x),则有

[  ]

A.g(x)=2x+1

B.g(x)=2x-1

C.g(x)=2x-3

D.g(x)=2x+7

查看答案和解析>>

科目:高中数学 来源:2009届宁夏银川一中高三年级第二次月考、数学试卷(理科) 题型:044

设函数f(x)=|2x+1|-|x-4|.

(1)解不等式f(x)>2;

(2)求函数y=f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是(     ).

A.2x+1                     B.2x-1                     C.2x-3                    D.2x+7

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x-1(x<0),则f(x)                      (  )

A.有最大值                        B.有最小值

C.是增函数                        D.是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2xa·2x-1(a为实数).若a<0,用函数单调性定义证明:yf(x)在(-∞,+∞)上是增函数.

查看答案和解析>>

同步练习册答案