精英家教网 > 高中数学 > 题目详情
已知双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线与抛物线C:y=x2+1相切于第一象限内的点P.
(I)求点P的坐标及双曲线E的离心率;
(II)记过点P的渐近线为l1,双曲线的右焦点为F,过点F且垂直于l1的直线l2与双曲线E交于A、B两点.当△PAB的面积为
40
3
时,求双曲线E的方程.
(I)设切点P的坐标为(x0
x20
+1)
,则切线的斜率为(x2+1)′|x=x0=2x0…(1分)
因为双曲线E的渐近线y=
b
a
x
与抛物线C相切,所以2x0=
b
a

x20
+1=
b
a
x0

由①、②消去x0得:(
b
2a
)2+1=
b2
2a2
,即b2=4a2,…(3分)
又c2=a2+b2,所以c2-a2=4a2,c2=5a2
e2=
c2
a2
=5,e=
5
.…(4分)
由①、②还可得
x20
+1=2
x20
,即x0=±1,
又P在第一象限,从而切点P的坐标为(1,2)…%分
(II)由(I)得l1的方程为y=2x,点F的坐标为(
5
a,0)
,双曲线E的方程为4x2-y2=4a2
因为l1⊥l2,所以l2的方程为y=-
1
2
(x-
5
a)

y=-
1
2
(x-
5
a)
4x2-y2=4a2
消去y得:15x2+2
5
ax-21a2=0

从而xA+xB=-
2
5
15
a,xAxB=-
7
5
a2

|AB|=
1+(-
1
2
)
2
(xA+xB)2-4xAxB
=
5
4
(-
2
5
15
a)
2
+
28
5
a2
=
8
3
a
.…(7分)
由点到直线的距离公式得△PAB的高h=|a-
5
|
.…(8分)
所以△PAB的面积S=
4
3
a|a-
5
|=
40
3

当0<a<5时,a(a-
5
)=10
,即a2-
5
a+10=0
,无实数解;
当a≥5时,a(a-
5
)=10
,即a2-
5
a+10=0

解得a=2
5
a=-
5
(舍去)…(11分)
a=2
5
,b=2a=4
5

所以所求方程为
x2
20
-
y2
80
=1
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知双曲线
x2
a 2
-
y2
b 2
=1
(b>a>0),0为坐标原点,离心率e=2,点M(
5
3
)在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P、Q两点,且
OP
OQ
=0,求:|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是______.

查看答案和解析>>

同步练习册答案