精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinθ,cosθ),
b
=(1,-2),且
a
b
=0.
(1)求tanθ的值;
(2)求函数f(x)=cos2x+tanθsinx,(x∈R)的值域.
(1)∵
a
=(sinθ,cosθ),
b
=(1,-2),
a
b
=0即sinθ-2cosθ=0,
两边都除以cosθ得:
sinθ
cosθ
-2=0,可得tanθ=2;
(2)由(1)得f(x)=cos2x+2sinx=-sin2x+2sinx+1=-(sinx-1)2+2,
∵-1≤sinx≤1,
∴sinx=1时,f(x)有最大值为2;sinx=-1时,f(x)有最小值为-2
所以函数的值域为:[-2,2]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)当θ∈[-
π
12
π
3
]时,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),满足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ)与
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步练习册答案