精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax2+x-1
ex

(Ⅰ)当a=0时,求函数f(x)在[1,3]上的最大值和最小值;
(Ⅱ)当-
1
2
≤a<0
时,讨论函数f(x)的单调性;
(Ⅲ)若f(x)+3≥0恒成立,求a的取值范围.
分析:(Ⅰ)当a=0时,求函数的导数,利用导数求函数f(x)在[1,3]上的最大值和最小值;
(Ⅱ)求导数利用导数讨论函数f(x)的单调性;
(Ⅲ)利用导数利用条件f(x)+3≥0恒成立,求a的取值范围.
解答:解:(1)当a=0时,f′(x)=
2-x
ex
,若f'(x)≥0,则x<2,若f'(x)<0,则x>2.
所以当x=2时,函数取得即极大值即最大值f(2)=
1
e2
,因为f(1)=0,f(3)=
2
e3
>0,
所以最小组为0.
(2)求导,得f′(x)=
(ax+1)(2-x)
ex
,令f'(x)=0,则(ax+1)(2-x)=0,
当a≠0时,方程二根为-
1
a
和2.
因为-
1
2
≤a<0
,所以-
1
a
>2

由f'(x)<0得,x>-
1
a
或x<2,此时函数单调递减,
由f'(x)>0,得-
1
a
<x<2
,此时函数单调递增.
(3)由f(x)+3≥0得ax2≥1-x-3ex,当x=0时,f(x)+3≥0恒成立.
当x≠0时,若f(x)+3≥0恒成立,即a≥
1-x-3ex
x2
恒成立,令g(x)=
1-x-3ex
x2
,只需求其最大值即可.
g′(x)=
x(3ex-1)(2-x)
x4
=0
,得x=2或x=-ln3.
当-ln3<x<0或0<x<2时,g'(x)>0,当x<-ln3或x>2时,g'(x)<0,
所以当x变化时,g(x),g'(x)的变化情况如下表:
 x  (-∞,ln3) -ln3  (-ln3,0) (0,2) (2,+∞)
 g'(x) + -   +  0 -
 g(x)  递增 极大值  递减     递增  极大值 递减
由上表可知,f(x)的极大值是f(-ln3)=
1
ln3
和g(2)=-
3e2+1
4
,f(x)的最大值是f(-ln3)=
1
ln3

所以要使f(x)+3≥0恒成立,则a≥
1
ln3
点评:本题主要考查利用导数研究函数的单调性以及求函数的最值问题,考查学生的运算能力,综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案