精英家教网 > 高中数学 > 题目详情
已知数列{an} (n∈N*)是首项为a,公比为q≠0的等比数列,Sn是数列{an} 的前n项和,已知12S3,S6,S12-S6成等比数列.
(Ⅰ)当公比q取何值时,使得a1,2a7,3a4成等差数列;
(Ⅱ)在(Ⅰ)的条件下,求Tn=a1+2a4+3a7+…+na3n-2
【答案】分析:(Ⅰ)由已知12S3,S6,S12-S6成等比数列,结合等比数列的性质及求和公式可求q,然后代入检验即可
(Ⅱ)由(Ⅰ)可求:na3n-2=,结合数列的通项的特点,考虑利用错位相减求和即可
解答:解:(Ⅰ)由题意可知,a≠0
①当q=1时,则12s3=36a,s6=6a,s12-s6=6a,
此时不满足条件12S3,S6,S12-S6成等比数列;…(1分)
②当q≠1时,则,s6=
s12-s6=
由题意得:12×=
化简整理得:(4q3+1)(3q3-1)(1-q3)(1-q6)=0
解得:或q=-1…(4分)
当q=-1时,a1+3a4=-2a,2a7=2a,
∴a1+3a4≠2(2a7),不满足条件;
时,
即∴a1+3a4=2(2a7),所以当q=-时,满足条件
时,
∴a1+3a4≠2(2a7),从而当时,不满足条件
综上,当q=时,使得a1,2a7,3a4成等差数列.…(8分)
(Ⅱ)由(Ⅰ)得:na3n-2=
所以…①
=…②
①-②得:
=
所以Tn=.…(13分)
点评:本题主要考查了等比数列的求和公式及性质的应用,错位相减求和方法的应用,体现了分类讨论思想的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案