精英家教网 > 高中数学 > 题目详情

an(nN*)an(nZ)的本质区别是什么?

答案:
解析:

an(nN*)表示n个相同的数a的乘积,而an(nZ)不表示n个相同因式的乘积,它是一种指数幂的形式,两个式子都是指数幂,但后一个的幂指数范围扩大到了任意整数,幂底数的范围缩小到底不为零


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
数列{an}满足an=f(n)(n∈N*
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=-2n-1,n∈N*},B={x|x=-6n+3,n∈N*},设Sn是等差数列{an}的前n项和,若{an}的任一项an∈A∩B,首项a1是A∩B中的最大数,且-750<S10<-300.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=(
2
2
)an+13n-9
,令Tn=24(b2+b4+b6+…+b2n),试比较Tn
48n
2n+1
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2000•上海)在xoy平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,对每个自然数n,点Pn位于函数y=2000(
a10
)x
,(0<a<10)的图象上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.
(Ⅰ)求点Pn的纵坐标bn的表达式;
(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;
(Ⅲ)设Cn=lg(bn),n∈N*,若a取(Ⅱ)中确定的范围内的最小整数,问数列{Cn}前多少项的和最大?试说明理由.(lg2=0.3010,lg7=0.8450)

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试、文科数学(北京卷) 题型:044

已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i={1,2,…,n}(n≥2)对于A=(a1,a2,…an),B=(b1,b2,…bn)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2||,…|an-bn|);A与B之间的距离为d(A,B)=|a1-b1|

(Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求A-B,d(A,B);

(Ⅱ)证明:A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);

(Ⅲ)证明:A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知曲线C:f(x)=x2,C上点A、An的横坐标分别为1和an(n∈N*),且a1=5,xn+1=af(xn-1)+1(a>0,a≠,a≠1).记区间Dn=[1,an](an>1).当x∈Dn时,曲线C上存在点Pn(xn,f(xn)),使得点Pn处的切线与直线AAn平行.

(1)试判断:数列{loga(xn-1)+1}是什么数列;

(2)当DnDn+1对一切n∈N*恒成立时,求实数a的取值范围;

(3)记数列{an}的前n项和为Sn,当a=时,试比较Sn与n+7的大小,并说明你的结论.

(文)已知f(x)=ax3+bx2+cx+d(a≠0)是定义在R上的函数,其图象交x轴于A、B、C三点.若点B的坐标为(2,0),且f(x)在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.

(1)求c的值.

(2)在函数f(x)的图象上是否存在一点M(x0,y0),使得f(x)在点M处的切线斜率为3b?若存在,求出点M的坐标;若不存在,请说明理由.

(3)求|AC|的取值范围.

查看答案和解析>>

同步练习册答案