精英家教网 > 高中数学 > 题目详情

如图,棱柱ABC-A1B1C1中,四边形AA1B1B是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=1,AB=2,∠A1AB=60°.
(1)求证:平面CA1B⊥平面A1ABB1
(2)求B1C1到平面A1CB的距离;
(3)求直线A1C与平面BCC1B1所成角的正切值.

解:(1)证明:∵四边形BCC1B1是矩形,AB⊥BC
∴AB⊥BC,BC⊥BB1,AB∩BB1=B
∴CB⊥平面A1ABB1
∵CB∈平面CA1B
∴平面CA1B⊥平面A1ABB1
(2)依题意的:A1B=2,AB1=2,B1C=,A1C=
∵B1C1∥BC,B1C1?平面A1CB,BC?平面A1CB
∴B1C1∥平面A1CB
则B1C1到平面A1CB的距离等于点C1到平面A1CB的距离为 H′
∵△A1CB的面积S1=1
∵AB1⊥A1B,CB⊥AB1
∴AB1⊥平面A1CB
∴三棱锥C1-A1CB的体积等于三棱锥B1-A1CB的体积
∴H′=AB1=
即B1C1到平面A1CB的距离等于
(3)设A1到平面BCC1B1的距离为H
∴平行四边形BCC1B1的面积S=2,
则△A1B1C1的面积为1,BB1=2.
由棱锥A1-BCC1B1的体积等于棱锥B-A1B1C1的体积,
得:H=
∴sinθ=
∴直线A1C与平面BCC1B1所成角的正切值 tanθ=
分析:(1)由已知中四边形BCC1B1是矩形,AB⊥BC,我们易由线面垂直的判定定理得到CB⊥平面A1ABB1,再由面面垂直的判定定理,即可得到平面CA1B⊥平面A1ABB1
(2)根据(1)的结论,及AB⊥BC,CB=1,AB=2,∠A1AB=60°,我们易求出几何体中各线段的长,由线面平行的判定定理,可得到B1C1∥平面A1CB,则B1C1到平面A1CB的距离可转化为B1C1上任一点(如B1点)平面A1CB的距离,利用等体积法,可得到结论.
(3)要求直线A1C与平面BCC1B1所成角,我们可根据(2)的结论,计算出A1点到平面BCC1B1距离,结合A1C=,利用线面夹角的定义,构造三角形即可求出答案.
点评:本题考查的知识点是点到平面的距离计算,平面与平面垂直的判定,直线与平面所成的角,其中(2),(3)中的等体积法,是转化思想在解答点到平面距离问题中最常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图三棱柱ABC-A1B1C1中,侧棱BB1与底面成60.角,AQ⊥底面A1B1C1于Q,AP⊥侧面BCC1B1于P,且A1Q⊥B1C1,AB=AC,AQ=3,AP=2则顶点A到棱B1C1的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图三棱柱ABC-A1B1C1中,E,F分别是AB、AC的中点,平面EFC1B1将三棱柱分成体积为V1,V2(左为V1,右为V2)两部分,则V1:V2=(  )
A、7:5B、4:3C、3:1D、2:1

查看答案和解析>>

科目:高中数学 来源: 题型:

某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图三棱柱ABC-A1B1C1的六个顶点上各安装一个灯泡,要求同一条线段的两端的灯泡颜色不同,则每种颜色的灯泡至少用一个的安装方法共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图三棱柱ABC-A¢B¢C¢底面ABC是边长为a的正三角形,侧面ABB¢A¢是菱形,且ÐA¢AB=60°MA¢B¢中点,已知BM^AC

    1)求证:BM^平面ABC

    2)证明:平面ABB¢A¢^平面ABC

    3)求异面直线AA¢BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图三棱柱ABC-A¢B¢C¢底面ABC是边长为a的正三角形,侧面ABB¢A¢是菱形,且ÐA¢AB=60°MA¢B¢中点,已知BM^AC

    1)求证:BM^平面ABC

    2)证明:平面ABB¢A¢^平面ABC

    3)求异面直线AA¢BC所成角的大小.

查看答案和解析>>

同步练习册答案