精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=4y,M为直线l:y=-1上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(Ⅰ)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程;
(Ⅱ)证明:以AB为直径的圆恒过点M.
(Ⅰ)当M的坐标为(0,-1)时,设过M点的切线方程为y=kx-1,
x2=4y
y=kx-1
,消y得x2-4kx+4=0,(1)
令△=(4k)2-4×4=0,解得:k=±1,
代入方程(1),解得A(2,1),B(-2,1),
设圆心P的坐标为(0,a),由|PM|=|PB|,得a+1=2,解得a=1,
故过M,A,B三点的圆的方程为x2+(y-1)2=4;    
(Ⅱ)证明:设M(x0,-1),由已知得y=
x2
4
,y′=
1
2
x,
设切点分别为A(x1
x12
4
),B(x2
x22
4
),
∴kMA=
x1
2
,kMB=
x2
2

切线MA的方程为y-
x12
4
=
x1
2
(x-x1),即y=
1
2
x1x-
1
4
x12
切线MB的方程为y-
x22
4
=
x2
2
(x-x2),即y=
1
2
x2x-
1
4
x22
又因为切线MA过点M(x0,-1),
所以得-1=
1
2
x0x1-
1
4
x12,①
又因为切线MB也过点M(x0,-1),
所以得-1=
1
2
x0x2-
1
4
x22,②
所以x1,x2是方程-1=
1
2
x0x-
1
4
x2的两实根,
由韦达定理得x1+x2=2x0,x1x2=-4,
因为
MA
=(x1-x0
x12
4
+1),
MB
=(x2-x0
x22
4
+1),
所以
MA
MB
=(x1-x0)(x2-x0)+(
x12
4
+1)(
x22
4
+1)
=x1x2-x0(x1+x2)+x02+
x12x22
16
+
1
4
(x12+x22)+1
=x1x2-x0(x1+x2)+x02+
x12x22
16
+
1
4
[(x1+x22-2x1x2]+1,
将x1+x2=2x0,x1x2=-4代入,得
MA
MB
=0,
则以AB为直径的圆恒过点M.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),其焦点F到准线的距离为
12

(1)试求抛物线C的方程;
(2)设抛物线C上一点P的横坐标为t(t>0),过P的直线交C于另一点Q,交x轴于M,过点Q作PQ的垂线交C于另一点N,若MN是C的切线,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=
12
y
和定点P(1,2),A、B为抛物线C上的两个动点,且直线PA和PB的斜率为非零的互为相反数.
(I)求证:直线AB的斜率是定值;
(II)若抛物线C在A、B两点处的切线相交于点M,求M的轨迹方程;
(III)若A′与A关于y轴成轴对称,求直线A′B与y轴交点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py,过点A(0,4)的直线l交抛物线C于M,N两点,且OM⊥ON.
(1)求抛物线C的方程;
(2)过点N作y轴的平行线与直线y=-4相交于点Q,若△MNQ是等腰三角形,求直线MN的方程.K.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=ay(a>0),斜率为k的直线l经过抛物线的焦点F,交抛物线于A,B两点,且抛物线上一点M(2
2
 , m) (m>1)
到点F的距离是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)过A,B两点分别作抛物线的切线,这两条切线的交点为点Q,求证:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2my(m>0)和直线l:y=x-m没有公共点(其中m为常数).动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(1,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步练习册答案