精英家教网 > 高中数学 > 题目详情

直线满足                时,直线只与x轴相交。


解析:

此时斜率不存在,且不与轴重合,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线Ax+By+C=0,
(1)系数为什么值时,方程表示通过原点的直线;
(2)系数满足什么关系时与坐标轴都相交;
(3)系数满足什么条件时只与x轴相交;
(4)系数满足什么条件时是x轴;
(5)设P(x0,y0)为直线Ax+By+C=0上一点,证明:这条直线的方程可以写成A(x-x0)+B(y-y0)=0.

查看答案和解析>>

科目:高中数学 来源:2006冲刺数学(四)、2006年普通高等学校招生全国统一考试数学试题 题型:044

椭圆G:(a>b>c)的两个焦点为(-c,0),(c,0),M是椭圆上一点,且满足

(1)求离心率e的取值范围;

(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为.①求此时椭圆G的方程.②(只理科作)设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,问:A、B两点能否关于过点P(0,),Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)图象上的任意两点.
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当数学公式,函数f(x)=x3+ax+b时,若f(x)∈MD,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:选修2-2综合测试(解析版) 题型:解答题

(1)已知函数f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)图象上的任意两点.
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当,函数f(x)=x3+ax+b时,若f(x)∈MD,求实数a的取值范围.

查看答案和解析>>

同步练习册答案