精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)满足f(0)=2和f(x+1)-f(x)=2x-1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[-1,3]时,求y=f(2t)的值域.
分析:(1)设函数f(x)=ax2+bx+c(a≠0),由f(0)=2可求得c,由f(x+1)-f(x)=2x-1,得2ax+a+b=2x-1,所以
2a=2
a+b=-1
,可求a,b,从而可得f(x);
(2)y=f(2t)=(2t2-2•2t+2=(2t-1)2+1,由t∈[-1,3],可得2t的范围,进而可求得y=f(2t)的值域.
解答:解:(1)由题意可设函数f(x)=ax2+bx+c(a≠0),则
由f(0)=2得c=2,
由f(x+1)-f(x)=2x-1得,a(x+1)2+b(x+1)+2-ax2-bx-2=2x-1对任意x恒成立,
即2ax+a+b=2x-1,
2a=2
a+b=-1
a=1
b=-2

∴f(x)=x2-2x+2;
(2)∵y=f(2t)=(2t2-2•2t+2=(2t-1)2+1,
又∵当t∈[-1,3]时,2t∈[
1
2
,8]

(2t-1)∈[-
1
2
,7]
,(2t-1)2∈[0,49],
∴y∈[1,50],
即当t∈[-1,3]时,求y=f(2t)的值域为[1,50].
点评:本题考查二次函数的值域及解析式的求解,考查学生分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案