精英家教网 > 高中数学 > 题目详情
已知椭圆的左、右焦点分别为F1、F2,离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=x+t(t>0)与椭圆C交于A,B两点.若原点O在以线段AB为直径的圆内,求实数t的取值范围.
【答案】分析:(Ⅰ)依题意,可知m>1,且,由此可m2=2,从而可得椭圆C的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),则原点O在以线段AB为直径的圆内,等价于x1x2+y1y2<0,将直线与椭圆方程联立,利用韦达定理,可建立不等式,从而可求实数t的取值范围.
解答:解:(Ⅰ)依题意,可知m>1,且,所以,所以m2=2,即椭圆C的方程为.…(5分)
(Ⅱ)设A(x1,y1),B(x2,y2),则原点O在以线段AB为直径的圆内,等价于(A,O,B三点不共线),也就等价于,即x1x2+y1y2<0…①…(7分)
联立,得3x2+4tx+2(t2-1)=0,所以△=16t2-24(t2-1)>0,即0<t2<3…②
…(10分)
于是
代入①式得,,即适合②式…(12分)
又t>0,所以解得即求.…(13分)
点评:本题考查椭圆的标准方程,考查向量知识的运用,考查韦达定理,解题的关键是联立方程,运用韦达定理解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的左、右焦点分别为F1,F2,椭圆的离心率为
1
2
且经过点P(1,
3
2
)
.M为椭圆上的动点,以M为圆心,MF2为半径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与y轴有两个交点,求点M横坐标的取值范围;
(3)是否存在定圆N,使得圆N与圆M相切?若存在.求出圆N的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左、右焦点分别为,其右准线上上存在点(点 轴上方),使为等腰三角形.

⑴求离心率的范围;

    ⑵若椭圆上的点到两焦点的距离之和为,求的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三下学期假期检测考试理科数学试卷 题型:解答题

已知椭圆的左、右焦点分别为, 点是椭圆的一个顶点,△是等腰直角三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,证明:直线过定点().

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省三明市高三上学期三校联考数学理卷 题型:解答题

(本题满分14分)     已知椭圆的左、右焦点分别为F1、F2,其中

F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  

(I)求椭圆C1的方程;   (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年云南省德宏州高三高考复习数学试卷 题型:解答题

(本小题满分12分)

已知椭圆的左、右焦点分别为,离心率,右准线方程为

(I)求椭圆的标准方程;

(II)过点的直线与该椭圆交于MN两点,且,求直线的方程.

 

查看答案和解析>>

同步练习册答案