精英家教网 > 高中数学 > 题目详情

设等差数列{an}的前n项和为Sn,若S19>0,S20<0,且数学公式,则在数列{bn}的前19项中,最大的项是第________项.

10
分析:由等差数列的前n项和的公式分别表示出S19>0,S20<0,然后再分别利用等差数列的性质得到a10大于0且a11小于0,得到此数列为递减数列,前10项为正,11项及11项以后为负,由已知的不等式得到数列的前1项和,前2项的和,…,前19项的和为正,前20项的和,前21项的和,…,的和为负,所以得到b11及以后的各项都为负,即可得到b10为最大项,即可得到n的值.
解答:由S19==19a10>0,得到a10>0;由S20==10(a10+a11)<0,得到a11<0,
∴等差数列{an}为递减数列.
则a1,a2,…,a10为正,a11,a12,…为负;S1,S2,…,S19为正,S20,S21,…为负,
<0,<0,…,<0,
又S10>S1>0,a1>a10>0,得到>0,故b10=最大.
故答案为:10.
点评:此题考查学生灵活运用等差数列的前n项和的公式化简求值,掌握等差数列的性质,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案