精英家教网 > 高中数学 > 题目详情

函数数学公式的单调递增区间是________.

(2,3)
分析:由函数,知-x2+4x-3>0,由t=-x2+4x-3是开口向下,对称轴为x=2的抛物线,利用复合函数的单调性的性质能求出函数的单调递增区间.
解答:∵函数
∴-x2+4x-3>0,解得1<x<3,
∵t=-x2+4x-3是开口向下,对称轴为x=2的抛物线,
∴由复合函数的单调性的性质知函数的单调递增区间是(2,3).
故答案为:(2,3).
点评:本题考查复合函数的单调性的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(
1
2
3
2
)
,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(
3
2
1
2
),则当0≤t≤12时,动点A的纵坐标y关于 t(单位:秒)的函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-x2+2lnx+8,则函数的单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2|sinx|,则该函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图所示,则该函数的单调递增区间是(  )
精英家教网

查看答案和解析>>

同步练习册答案