精英家教网 > 高中数学 > 题目详情
已知在△ABC中,cosA=-
4
5
,a,b,c分别是角A,B,C所对的边
(Ⅰ)若a=3
5
,c=5,求b;
(Ⅱ)若sinB=
5
13
,求cosC的值.
分析:(I)根据余弦定理得a2=b2+c2-2bccosA的式子,建立关于边b的一元二次方程,解之得可得b=2(舍负);
(II)由同角三角函数的关系,算出cosB和sinA的值,再利用诱导公式得cosC=-cos(A+B),结合两角和的余弦公式代入数据即可算出cosC的值.
解答:解:(Ⅰ) 在△ABC中,由余弦定理得
a2=b2+c2-2bccosA,即(3
5
2=b2+52-10b•(-
4
5
),…(4分)
解之得b=2(舍去-10).…(7分)
(Ⅱ)由sinB=
5
13
且B为锐角,得cosB=
12
13

∵cosA=-
4
5
,得sinA=
1-cos2A
=
3
5
,…(9分)
故cosC=-cos(A+B)=sinAsinB-cosAcosB…(11分)
=
3
5
5
13
-(-
4
5
)•
12
13
=
63
65
 …(14分)
点评:本题给出三角形的边和角A大小,求另外的边和角.着重考查了余弦定理、两角和的余弦公式和同角三角函数的关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(A)(不等式选讲)不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是
 

(B) (几何证明选讲)如图,已知在△ABC中,∠C=90°,正方形DEFC內接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则正方形DEFC的边长等于
 

(C) (极坐标系与参数方程)曲线ρ=2sinθ与ρ=2cosθ相交于A,B两点,则直线AB的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,c=10,A=45°,C=30°,求a,b和B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,C=2A,cosA=
3
4
,且2
BA
CB
=-27.
(1)求cosB的值;   
(2)求AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,C=90°,且|
CA
|=
|CB|
=3
,点M、N满足
AM
=
MN
=
NB
,则
CM
CN
等于
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,C=2B,A≠B,求证:C2=b(a+b ).

查看答案和解析>>

同步练习册答案