精英家教网 > 高中数学 > 题目详情
10.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)若PD=$\sqrt{2}$AB=$\sqrt{2}$,且三棱锥P-ACE的体积为$\frac{\sqrt{2}}{12}$,求AE与平面PDB所成的角的大小.

分析 (Ⅰ)只需证AC⊥BD,PD⊥AC,可得AC⊥平面PDB,平面AEC⊥面PDB
(Ⅱ)由VP-ACE=VP-ABCD -VP-ACD -VE-ABC,设E点到平面ABC的距离为h,代入上式,可解得h=$\frac{\sqrt{2}}{2}$,即E为PB的中点.设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,可得∠AEO为AE与平面PDB所的角,
在Rt△AOE中,OE=$\frac{1}{2}PD=\frac{\sqrt{2}}{2}AB=AO$,可得∠AOE=45°,即AE与平面PDB所成的角的大小为450

解答 解:(Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,∴PD⊥AC,
∴AC⊥平面PDB,∴平面AEC⊥面PDB.---------------------(4分)
(Ⅱ)因为VP-ACE=VP-ABCD -VP-ACD -VE-ABC
设E点到平面ABC的距离为h,代入上式,可解得h=$\frac{\sqrt{2}}{2}$,即E为PB的中点.
设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE∥PD,OE=$\frac{1}{2}PD$,
又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,OE=$\frac{1}{2}PD=\frac{\sqrt{2}}{2}AB=AO$,
∴∠AOE=45°,即AE与平面PDB所成的角的大小为450.----------------(12分)

点评 本题考查了面面垂直的判定,等体积法求高,线面角的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.△ABC中,角A、B、C所对边分别为a、b、c,cosA=$\frac{5}{13}$,tan$\frac{B}{2}+cot\frac{B}{2}=\frac{10}{3}$,c=21;
(1)求sinC的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两位学生参加数学竞赛培训,在培训期间他们参加的5次预赛成绩记录如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用茎叶图表示这两组数据;
(2)求甲、乙两人的成绩的平均数与方差;
(3)若现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在底面半径为2母线长为4的圆锥中内接一个高为x的正四棱柱,
(1)用x表示正四棱柱的侧面积;
(2)x为何值时,正四棱柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.经过点(1,0),(0,2)且圆心在直线y=2x上的圆的方程是(x-$\frac{1}{2}$)2+(y-1)2=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x+y+z=1时,则x2+y2+z2的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.$\frac{1}{27}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)的导函数为f′(x),且满足$f(x)=2x{f^'}(1)+\frac{1}{x}$,则f′(1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m=(\sqrt{3}sinx,sinx),\overrightarrow n=(cosx,sinx)$.
(Ⅰ)若$\overrightarrow m∥\overrightarrow n$且$x∈[{0,\frac{π}{2}}]$,求角x;
(Ⅱ)若$f(x)=\overrightarrow{m•}\overrightarrow n$,求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线y=xex+1在点(1,1)处切线的斜率等于(  )
A.2eB.2e2C.2D.1

查看答案和解析>>

同步练习册答案