精英家教网 > 高中数学 > 题目详情
设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
解:(1)∵accosC+ c=b,
由正弦定理得2RsinAcosC+ 2RsinC=2RsinB,
即sinAcosC+ sinC=sinB,
又∵sinB=sin(A+C)=sinAcosC+cosAsinC,
 sinC=cosAsinC,
∵sinC≠0, ∴ ,
又∵0<A<π, ∴ 
(2)由正弦定理得:b= = ,c= ,
∴l=a+b+c =1+ (sinB+sinC)
=1+ (sinB+sin(A+B))
=1+2( sinB+ cosB)
=1+2sin(B+ ),
∵A= ,∴B ,∴B+  ,∴  
故△ABC的周长l的取值范围为(2,3].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)与
n
=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边分别为a、b、c.若b=
3
,c=1,B=60°
,则角C=
 
°.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c
(1)求证:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,试求
tanA
tanB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函数f(x)的最大值和最小值,并写出相应的x的值;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,满足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周长;
(2)若直线l:
x
a
+
y
b
=1
恒过点D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步练习册答案