精英家教网 > 高中数学 > 题目详情

已知f(x)=loga(ax-1)(a>0,且a≠1)
(1)求其定义域;
(2)解方程f(2x)=f-1(x).

解:(1)由已知条件,知ax-1>0,即ax>1.
故当a>1时,x>0,当0<a<1时,x<0.
即当a>1时,函数的定义域为(0,+∞),
当0<a<1时,函数的定义域为(-∞,0).
(2)令y=loha(ax-1),同ay=ax-1,
x=loga(ay+1),即f-1(x)=loga(ax+1).
∵f(2x)=f-1(x),∴loga(a2x-1)=loga(ax+1),
即a2x-1=ax+1.
∴(ax2-ax-2=0.
∴ax=2,或ax=-1(舍去).
∴x=loga2.
分析:(1)由已知条件,知ax-1>0,讨论底数a的范围,利用指数函数的单调性求出指数不等式的解集.
(2)先求出反函数f-1(x),利用对数的性质,换元法解一元二次方程解出ax,进而解出x.
点评:本题考查函数定义域的求法,求反函数以及利用换元法解一元二次方程,体现了分类讨论及转化的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案