精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的函数,对于任意x1、x2∈R,f(x1+x2)=f(x1)+f(x2)-1恒成立,且当x>0时,f(x)>1,若f(2013)=2014,且f(x2-ax-3)<3对任意x∈(-1,1)恒成立,则实数a的取值范围为
[-4,4]
[-4,4]
分析:先利用函数单调性的定义判断f(x)在R上的单调性,然后由f(x1+x2)=f(x1)+f(x2)-1,f(2013)=2014可推得f(1)的值,进而可把3表示为f(x)的函数值,再根据单调性可去掉不等式f(x2-ax-3)<3中的符号“f”,根据恒成立可得不等式组,解出即可.
解答:解:任意取x1、x2∈R,且x1<x2
则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1,
∵x>0时,f(x)>1,且x2-x1>0,
∴f(x2-x1)-1>1-1=0,
∴f(x2)-f(x1)>0,即f(x2)>f(x1),
∴f(x)是定义在R上的增函数,
由f(x1+x2)=f(x1)+f(x2)-1,得
f(2013)=f(2012)+f(1)-1
=f(2011)+2f(1)-2
=f(2010)+3f(1)-3
=…
=2013f(1)-2012,则2013f(1)-2012=2014,
∴f(1)=2,
∴3=f(1)+f(1)-1=f(2),
∴f(x2-ax-3)<3对任意x∈(-1,1)恒成立,即f(x2-ax-3)<f(2)对任意x∈(-1,1)恒成立,
又f(x)在R上递增,
∴x2-ax-3<2对任意x∈(-1,1)恒成立,即x2-ax-5<0对任意x∈(-1,1)恒成立,
则有
(-1)2-a(-1)-5≤0
12-a•1-5≤0
,即
a-4≤0
-a-4≤0
,解得-4≤a≤4,
故答案为:[-4,4].
点评:本题考查恒成立问题,考查抽象函数的单调性、函数值,考查抽象不等式,考查学生综合运用知识分析解决问题的能力,把抽象不等式转化为具体不等式是解决本题的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案