精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式的离心率为数学公式,长轴长为2数学公式
(1)求椭圆的方程;
(2)试直线y=kx+1交椭圆于不同的两点A、B,以AB为直径的圆恰过原点O,求直线方程.

解:(1)设椭圆的半焦距为c,
∵椭圆的离心率为,长轴长为2


∵a2=b2+c2
∴b=1 (2分)
∴所求椭圆方程为 (4分)
(2)设A(x1,y1),B(x2,y2),

消去y并整理得(1+3k2)x2+6kx=0
则△=(6k)2-4(1+3k2)×0>0,
解得k≠0 (5分)
,x1x2=0 (8分)
∵以AB为直径的圆恰过原点O

∴x1x2+y1y2=x1x2+(kx1+1)(kx2+1)=(1+k2)x1x2+k(x1+x2)+1=(10分).

∴直线方程为(12分)
分析:(1)根据椭圆的几何性质,求出几何量,即可得到椭圆的方程;
(2)直线方程与椭圆方程联立,利用韦达定理结合以AB为直径的圆恰过原点O,求得切线向量,即可求得直线方程.
点评:本题重点考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是借助于韦达定理,将以AB为直径的圆恰过原点O,转化为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案