精英家教网 > 高中数学 > 题目详情

n=23,求证:

答案:略
解析:

证明:根据柯西不等式

于是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列..(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
)
(n=2,3,4…)求数列{bn}的通项公式.(3)求和Sn=b1b2-b2b3+b3b4 -…+(-1)n-1bnbn+1

查看答案和解析>>

科目:高中数学 来源:高三数学教学与测试 题型:044

的展开式中,设的系数为(n=2,3,4…).求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列..(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=数学公式(n=2,3,4…)求数列{bn}的通项公式.(3)求和Sn=b1b2-b2b3+b3b4 -…+(-1)n-1bnbn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的首项a1=1,前n项和Sn满足2kSn-(2k+1)Sn-1=2k(常数k>0,n=2,3,4…)

(Ⅰ)求证:数列{an}是等比数列;

(Ⅱ)设数列{an}的公比为f(k),作数列{bn},使b1=3,bn=f()(n=2,3,4,…)求数列{bn}的通项公式;

(Ⅲ)设cn=bn-2,若存在m∈N*,且m<n;使(cmcm+1+cm+lcm+2+…+cncn+1)<,试求m的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.6 递归数列的基本问题(解析版) 题型:解答题

设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列..(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=(n=2,3,4…)求数列{bn}的通项公式.(3)求和Sn=b1b2-b2b3+b3b4 -…+(-1)n-1bnbn+1

查看答案和解析>>

同步练习册答案