精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
(x-1)2+㏑x-ax+a

(I)若a=
3
2
,求函数f(x)的极值;
(II)若对任意的x∈(1,3),都有f(x)>0成立,求a取值范围.
(I)函数f(x)的定义域为(0,+∞).
f(x)=x-1+
1
x
-a

a=
3
2
时,f(x)=x+
1
x
-
5
2
=
2x2-5x+2
2x

令f(x)=0,解得x=
1
2
或2.列表:
x (0,
1
2
)
1
2
(
1
2
,2)
2 (2,+∞)
f(x) + 0 - 0 +
f(x) 单调递增 极大值 单调递减 极小值 等单调递增
函数f(x)在x=
1
2
处取得极大值f(
1
2
)=-
1
8
-ln2

函数f(x)在x=2处取得极小值f(2)=ln2-
1
2

(II)f(x)=x+
1
x
-(1+a)
,当x∈(1,3)时,(x+
1
x
)∈(2,
10
3
)

(i)当1+a≤2,即a≤1时,x∈(1,3),f(x)>0,函数f(x)在(1,3)是增函数,
?x∈(1,3),f(x)>f(1)=0恒成立;                     
(ii)当1+a≥
10
3
,即a≥
7
3
时,x∈(1,3)时,f(x)<0,函数f(x)在(1,3)是减函数,
?x∈(1,3),f(x)<f(1)=0恒成立,不合题意,应舍去;
(iii)当2<1+a<
10
3
,即1<a<
7
3
时,x∈(1,3)时,f(x)先取负,再取0,最后取正,函f(x)在(1,3)先递减,再递增,而f(1)=0,∴?x∈(1,3),f(x)>f(1)=0不能恒成立;
综上,a的取值范围是(-∞,1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案