精英家教网 > 高中数学 > 题目详情

设F1,F2是椭圆数学公式+数学公式=1(a>b>0)的两个焦点,P是椭圆上一点,∠F1PF2,=90°则该椭圆离心率的最小值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:先根据∠F1PF2,=90°判断出P在以F1F2为直径,原点为圆心的圆上,圆与椭圆相交的条件为圆的半径在在椭圆半长轴和半短轴之间,进而推断b和c的不等式关系,利用a,b和c的关系求得a和c的不等式关系进而求得离心率e的范围.
解答:∵∠F1PF2=90°
∴P在以F1F2为直径,原点为圆心的圆上,
圆与椭圆相交的条件为圆的半径在在椭圆半长轴和半短轴之间,即:b≤c≤a
∵e=,c≥b,
由b2+c2=a2可得:e≥
故选B
点评:本题主要考查了椭圆的简单性质.考查了学生数形结合和转化和化归的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1、F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
49
+
y2
24
=1
的两个焦点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林模拟)设F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,过左焦点F1的直线与椭圆交于A、B两点,若△ABF2是以AF2为斜边的等腰直角三角形,则该椭圆的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)设F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,若直线x=ma (m>1)上存在一点P,使△F2PF1是底角为30°的等腰三角形,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,若该椭圆上一点P满足|PF2|=|F1F2|,且以原点O为圆心,以b为半径的圆与直线PF1有公共点,则该椭圆离心率e的取值范围是
 

查看答案和解析>>

同步练习册答案