精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)求二面角C1-AB-C的正切值.
分析:(1)连接C1B,设CB1与C1B的交点为E,连接DE,由四棱柱侧面为平行四边形知E是BC1的中点,由此能够证明AC1∥平面CDB1
(2)由直棱柱知C1C垂直平面ABC,过点C作CF⊥AB于F,连接C1F则C1F⊥AB,则∠C1FC为二面角C1-AB-C的平面角.由此能求出二面角C1-AB-C的正切值.
解答:证明:(1)连接C1B,设CB1与C1B的交点为E,
连接DE,由四棱柱侧面为平行四边形知
E是BC1的中点,
∵D是AB的中点,∴DE∥AC1,…(3分)
∵DE?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1.…(6分)
(2)由直棱柱知C1C垂直平面ABC,过点C作CF⊥AB于F,连接C1F则C1F⊥AB
∴∠C1FC为二面角C1-AB-C的平面角.
在直三棱柱ABC-A1B1C1中,
∵底面三边长AC=3,AB=5,BC=4,∴AC⊥BC,
在Rt△ABC中,CF=
AC•BC
AB
=
12
5

又CC1=AA1=4,∴tanC1FC=
C1C
CF
=
4
12
5
=
5
3

∴二面角C1-AB-C的正切值为
5
3
点评:本题考查直线与平面平行的证明,考查二面角的正切值的求法.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案