精英家教网 > 高中数学 > 题目详情

已知0x3,试用两种方法求函数的最大值.

答案:略
解析:

解法1:二次函数的配方法,解法2


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)
13
ax3+bx2+x+3
,其中a≠0.
(1)当a,b满足什么条件时,f(x)取得极值?
(2)已知a>0,且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若任意的a、b∈[-1,1],当a+b≠0时,总有
f(a)+f(b)
a+b
>0

(1)判断函数f(x)在[-1,1]上的单调性,并证明你的结论;
(2)解不等式:f(x+1)<f(
1
x-1
)

(3)若f(x)≤m2-2pm+1对所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常数),试用常数p表示实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知0<α<
π
4
,β为f(x)=cos(2x+
π
8
)的最小正周期,
a
=(tan(α+
1
4
β),-1),
b
=(cosα,2),且
a
b
=3.求
cos2α+sin2(α+β)
cosα-sinα
的值.  
(2)如图,平行四边形ABCD中,M、N分别为DC、BC的中点,已知
AM
=
c
AN
=
d
,试用
c
d
表示
AB
AD

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知0<x<3,试用两种方法求函数的最大值.

查看答案和解析>>

同步练习册答案