精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=-f(x+2),且x∈(-1,0)时,f(x)=2x+
15
,则f(log220)=
 
分析:由f(-x)=-f(x)可知f(x)为奇函数,由f(x)=-f(x+2)可得f(x+4)=f(x),可知f(x)是以4为周期的周期函数,利用周期性将f(log220)转化为f(log2
5
4
),再利用奇函数,将f(log2
5
4
)转化为-f(log2
4
5
),根据当x∈(-1,0),f(x)=2x+
1
5
,即可求得f(log220)的值.
解答:解:∵f(-x)=-f(x),
∴f(x)为奇函数,
∵f(x)=-f(x+2),即f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴f(x)是周期函数,周期为4,
∵log216<log220<log232,
∴4<log220<5,
∴0<log220-4<1,即0<log2
5
4
<1,即-1<log2
4
5
<0,
∴f(log220)=f(log220-4)=f(log2
5
4
)=-f(-log2
5
4
)=-f(log2
4
5
),
∵x∈(-1,0)时,f(x)=2x+
1
5

∴f(log2
4
5
)=2log2
4
5
+
1
5
=
4
5
+
1
5
=1,
∴f(log220)=-1.
故答案为:-1.
点评:本题考点是函数的值,考查利用函数的性质通过转化来求函数的值,是函数性质综合运用的一道好题.对于本题中恒等式的意义要好好挖掘,做题时要尽可能的从这样的等式中挖掘出信息.解题的关键是利用周期把所求的函数值转化到已知区间上.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案