精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(x∈R).

(1)当f(1)=1时,求函数f(x)的单调区间;

(2)设关于x的方程f(x)=的两个实根为x1,x2,且-1≤a≤1,求|x1-x2|的最大值;

(3)在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.

答案:
解析:

  解:(1)由f(1)=1得a=-1,2分

  (x)=≥0 4分

  -2≤x≤1,所以f(x)的减区间是(-∞,-2]和[1,+∞),增区间是[-2,1] 5分

  (2)方程f(x)=可化为x2-ax-2=0,Δ=a2+8>0

  ∴x2-ax-2=0有两不同的实根x1,x2,则x1+x2=a,x1x2=-2 7分

  ∴|x1-x2|=

  ∵-1≤a≤1,∴当a=±1时,∴|x1-x2|max=3 8分

  (3)若不等式m2+tm+1≥|x1-x2|恒成立,由(2)可得m2+tm+1≥3,对t∈[-1,1]都成立m2+tm-2≥0,t∈[-1,1],设g(t)=m2+tm-2 9分

  若使t∈[-1,1]时g(t)≥0都成立,则 11分

  解得:m≥2或m≤-2,所以m的取值范围是m≥2或m≤-2 12分


练习册系列答案
相关习题

科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题

(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题

已知函数f(x)=4x2mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高三第三次月考文科数学卷 题型:选择题

已知函数f(x)=若f(a)=,则a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题

  已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:

    (1)方程f [f (x)]=x一定无实根;

    (2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;

    (3)若a<0,则必存在实数x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;

    正确的序号有          .              

 

查看答案和解析>>

科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题

已知函数f(x)=|lg(x-1)|-()x有两个零点x1x2,则有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步练习册答案