精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3-bx2+9x+2,若f(x)在x=1处的切线方程为3x+y-6=0,
(Ⅰ)求f(x)的解析式及单调区间;
(Ⅱ)若对任意的x∈[,2]都有f(x)≥t2-2t-1成立,求函数g(t)=t2+t-2的最值。
解:由已知,得切点为(1,3),且f′(x)=3ax2-2bx+9,
(Ⅰ)由题意可得,解得

由f′(x)=0,得
由f′(x)>0,得;由f′(x)<0,得
f(x)的单调增区间为,f(x)的单调减区间为
(Ⅱ)由(Ⅰ)可知f(x)的极小值为
,f(2)=4,
∴f(x)在上的最小值为2,
由f(x)≥t2-2t-1对x∈恒成立,则t2-2t-1≤2,
则t2-2t-3≤0,解得-1≤t≤3,
而g(t)=t2+t-2=
故当时,g(t)最小值为;当t=3时,g(t)最大值为10。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案