精英家教网 > 高中数学 > 题目详情
求函数y=lg[-(-1)tanx-tan2x]+的定义域.

解析:要使函数有意义,则有

由图象得-<tanx<1的解为

-+kπ<x<kπ+(k∈Z).

故所求的定义域为

[-3,-)∪(-,)∪(,3].


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=
lg(2-x)
x-1
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=lg(sin(2x-
π4
))
的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求sin30°-tan0°+ctg
π
4
-cos2
6
的值

(3)求函数y=
lg(25-5x)
x+1
的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:10(2+
5
)-1-(
1
500
)-
1
2
+30(
125
9
)
1
2
(
5
3
)
1
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
lg(3-x)
12+x-x2
+(x+1)0
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=lg(4-x2)的单调递增区间为
(-2,0)
(-2,0)

查看答案和解析>>

同步练习册答案