精英家教网 > 高中数学 > 题目详情
(2007•肇庆二模)设a为正实数,函数f(x)=x3-ax2-a2x+1,x∈R.
(Ⅰ)求f(x)的极值;
(Ⅱ)设函数y=f(x)至多有两个零点,求实数a的取值范围.
分析:(1)对函数求导,由题意可得,令f'(x)=3x2-2ax-a2=0,得x1=-
a
3
x2=a(a>0)
,讨论函数的单调性得到函数的极值;
(2)分类讨论,当极小值f(a)=1-a3≥0,或极小值f(a)=1-a3<0,函数的零点个数,
进而得到函数y=f(x)至多有两个零点时,实数a的取值范围.
解答:解:(Ⅰ)由f(x)=x3-ax2-a2x+1,得f'(x)=3x2-2ax-a2.(2分)
令f'(x)=3x2-2ax-a2=0,得x1=-
a
3
x2=a(a>0)

x (-∞,-
a
3
)
-
a
3
(-
a
3
,a)
a (a,+∞)
f(x) + 0 - 0 +
 f(x) 极大 极小
(5分)
f(x)极大=f(-
a
3
)=(-
a
3
)3-a(-
a
3
)2-a2×(-
a
3
)+1=
5
27
a3+1
(6分)
f(x)极小=f(a)=a3-a3-a3+1=1-a3(7分)
(Ⅱ)由(Ⅰ)可得f(x)在(-∞,-
a
3
)
上递增,在(-
a
3
,a)
上递减,在(a,+∞)上递增,
f(x)极大=f(-
a
3
)=
5
27
a3+1>0(a>0)
f(x)极小=f(a)=a3-a3-a3+1=1-a3(9分)
当极小值f(a)=1-a3≥0,即0<a≤1时,y=f(x)在x∈(-
a
3
,+∞)
上有1个或0个零点,
此时f(-1)=a2-a=a(a-1)≤0,∴y=f(x)在x∈(-∞,-
a
3
)
上有1个零点,
∴0<a≤1时,y=f(x)有1个或2个零点;                         (11分)
当极小值f(a)=1-a3<0,即a>1时,y=f(x)在x∈(-
a
3
,+∞)
上有2个零点,
此时f(-a)=1-a3<0,y=f(x)在x∈(-∞,-
a
3
)
上有1个零点,
∴当a>1时,y=f(x)有3个零点;                                 (13分)
综上,若函数y=f(x)至多有两个零点,则a的取值范围是a∈(0,1].(14分)
点评:本题主要考查了利用函数的导数研究函数的单调性,函数的极值与最值的求解及函数的恒成立与函数的最值的相互转化关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•肇庆二模)已知向量
a
=(1,2),
b
=(2,x),且
a
b
=-1
,则x的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•肇庆二模)命题“?x∈R,x2-2x+4≤0”的否定为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•肇庆二模)已知两组数据x1,x2,…,xn与y1,y2,…,yn,它们的平均数分别是
.
x
.
y
,则新的一组数据2x1-3y1+1,2x2-3y2+1,…,2xn-3yn+1的平均数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•肇庆二模)在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.
其中正确命题的个数为(  )个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•肇庆二模)若x∈[-
π
2
,0]
,则函数f(x)=cos(x+
π
6
)-cos(x-
π
6
)+
3
cosx
的最小值是(  )

查看答案和解析>>

同步练习册答案