分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.
解答 解:由z=ax+y得y=-ax+z,直线y=-ax+z是斜率为-a,y轴上的截距为z的直线,![]()
作出不等式组对应的平面区域如图:
则A(1,1),B(2,4),
∵z=ax+y的最大值为2a+4,最小值为a+1,
∴直线z=ax+y过点B时,取得最大值为2a+4,
经过点A时取得最小值为a+1,
若a=0,则y=z,此时满足条件,
若a>0,则目标函数斜率k=-a<0,
要使目标函数在A处取得最小值,在B处取得最大值,
则目标函数的斜率满足-a≥kBC=-1,
即0<a≤1,
若a<0,则目标函数斜率k=-a>0,
要使目标函数在A处取得最小值,在B处取得最大值,
则目标函数的斜率满足-a≤kAC=2,
即-2≤a<0,
综上-2≤a≤1,
故答案为:[-2,1].
点评 本题主要考查线性规划的应用,根据条件确定A,B是最优解是解决本题的关键.注意要进行分类讨论,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | 2 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a4=100 | B. | a2n+1=10a2n(n∈N+) | ||
| C. | a2n=10a2n-1(n∈N+) | D. | 以上说法都不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com