精英家教网 > 高中数学 > 题目详情
已知函数f(x)和g(x)关于直线x=1对称,且f(4)=2,则g(-2)=
2
2
分析:根据函数f(x)和g(x)关于直线x=1对称,又4和-2也关于直线x=1对称,从而g(-2)=f(4)即可求出答案.
解答:解:∵函数f(x)和g(x)关于直线x=1对称,
又4和-2也关于直线x=1对称,
且f(4)=2,
则g(-2)=f(4)=2.
故答案为:2.
点评:本小题主要考查与直线关于点、直线对称的直线方程、函数对称性的应用等基础知识,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数.且当x<0时,f′(x)g(x)+f(x)g′(x)>0,g(-2)=0,则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于y轴对称,且f(x)=x2+
1
2
x
.则不等式g(x)≥f(x)-|x-4|的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)λ≠-1,若h(x)=g(x)-λf(x)+1在x∈[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且g(x)=-x2+2x.
(1)求函数f(x)的解析式;
(2)解不等式f(x)≤g(x)+|x-1|;
(3)若函数h(x)=f(x)+λ•g(x)+1在区间[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案