精英家教网 > 高中数学 > 题目详情
公差不为0的等差数列{an}中,有2a2-a72+2a12=0,数列{bn}是各项为正数的等比数列,且b7=a7,则log4b1+log4b2++log4b13=(  )
分析:利用等差数列的性质可把原式化简可得4a7-a72=0,从而可求a7,再由等比数列的性质可得b5•b9=b72,从而可求.
解答:解:由等差数列的性质可得,a2+a12=2a7
由2a2-a72+2a12=0可得4a7-a72=0,
a7=0或a7=4,
当a7=0时,b7=a7=0不符,舍去.
当a7=4时,b7=4,
b1•b13=b72=16,
∴log4b1+log4b2+…+log4b13
=log4(b1×b2×…×b13
=log4(b1b13)6
=log4166=12.
故选C.
点评:本题主要考查了等差数列(若m+n=p+q,则再等差数列中有am+an=ap+aq;在等比数列中有am•an=ap•aq)与等比数列的性质的综合应用,利用性质可以简化基本运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
S3-S2
S5-S3
的值为(  )
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=2,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求数列{
1Sn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,则S1,S2,S4成等比数列.
(1)求数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)在(2)条件下,若bn=an-14,求{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则a5的值为
4
4

查看答案和解析>>

同步练习册答案