精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=,EF=2,
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
(Ⅰ)证明:过点E作EG⊥CF并CF于G,连结DG,
可得四边形BCGE为矩形。
又ABCD为矩形,所以AD∥EG,
从而四边形ADGE为平行四边形,故AE∥DG,
因为AE平面DCF,DG平面DCF,
所以AE∥平面DCF。
(Ⅱ)解:过点B作BH⊥EF交FE的延长线于H,连结AH,
由平面ABCD⊥平面BEFG,AB⊥BC,
得AB⊥平面BEFC,从而AH⊥EF,
所以∠AHB为二面角A-EF-C的平面角,
在Rt△EFG中,因为EG=AD=,EF=2,
所以
又因为CE⊥EF,所以CF=4,从而BE=CG=3,
于是BH=BE·sin∠BEH=
因为AB=BH·tan∠AHB,
所以当AB为时,二面角A-EF-G的大小为60°。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
3
,EF=2

(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD和梯形BEFC所在的平面互相垂直,BE∥CF,BE<CF,∠BCF=
π
2
,AD=
3
,EF=2.
(I)求证:DF∥平面ABE;
(II)设
CF
CD
=λ,问:当λ取何值时,二面角D-EF-C的大小为
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD和矩形BCEF所在平面互相垂直,G为边BF上一点,∠CGE=90°,AD=
3
,GE=2.
(1)求证:直线AG∥平面DCE;
(2)当AB=
2
时,求直线AE与面ABF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=
3

EF=2.
(1)求异面直线AD与EF所成的角;
(2)当二面角D-EF-C的大小为45°时,求二面角A-EC-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=
3
,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当二面角D-EF-B的大小为45°时,求二面角A-EC-F的大小.

查看答案和解析>>

同步练习册答案