精英家教网 > 高中数学 > 题目详情
(2011•盐城二模)已知函数f(x)=ax-x+b的零点x0∈(k,k+1)(k∈Z),其中常数a,b满足3a=2,3b=
94
,则k=
1
1
分析:由已知条件求出a、b的值,代入函数f(x)=ax-x+b可得 函数f(x)=(log32)x-x+2-2log32,且函数是R上的减函数,根据函数的单调性和零点的性质进行求解.
解答:解:∵3a=2,3b=
9
4
,∴a=log32  b=log3
9
4
=2-2log32,
∴函数f(x)=(log32)x-x+2-2log32,且函数是R上的减函数,
而f(1)=2-2log32>0,f(2)=(log32)2-2log32<0,
∴函数f(x)=(log32)x-x+2-2log32在(1,2)内有一个零点,
故k=1,
故答案为 1.
点评:本题主要考查了函数零点的判定定理以及指数与对数的互化,函数 f(x)=(log23)x+x-log32是增函数,单调函数最多只有一个零点,是解题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•盐城二模)选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π3
),它们相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知a,b,c是非零实数,则“a,b,c成等比数列”是“b=
ac
”的
必要不充分
必要不充分
条件(从“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知f(x)=cosx,g(x)=sinx,记Sn=2
2n
k=1
f(
(k-1)π
2n
)
-
1
2n
2n
k=1
g(
(k-n-1)π
2n
)
,Tm=S1+S2+…+Sm,若Tm<11,则m的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在如图所示的多面体中,已知正三棱柱ABC-A1B1C1的所有棱长均为2,四边形ABCD是菱形.
(Ⅰ)求证:平面ADC1⊥平面BCC1B1
(Ⅱ)求该多面体的体积.

查看答案和解析>>

同步练习册答案