精英家教网 > 高中数学 > 题目详情
已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为,O为坐标原点,求△OPQ面积的最大值.
【答案】分析:(1)利用点到直线的距离公式,求得另一条切线方程,与圆方程联立,从而可得直线AB的方程,由此可求椭圆T的方程;
(2)直线方程与椭圆方程联立,利用韦达定理求出|PQ|,求出原点到直线l的距离,表示出三角形的面积,进而利用基本不等式,即可求得△OPQ面积的最大值.
解答:解:(1)由题意:一条切线方程为:x=2,设另一条切线方程为:y-4=k(x-2)..(2分)
则:,解得:,此时切线方程为:
切线方程与圆方程联立,可得x2+(2=4,从而可得
则直线AB的方程为x+2y=2….(4分)
令x=0,解得y=1,∴b=1;令y=0,得x=2,∴a=2
故所求椭圆方程为….(6分)
(2)联立整理得
令P(x1,y1),Q(x2,y2),则
,即:2k2-1>0…..(8分)
又原点到直线l的距离为,…..(10分)

=
当且仅当时取等号,则△OPQ面积的最大值为1.            …..(12分)
点评:本题考查椭圆的标准方程,考查直线与圆相切,考查三角形面积的计算,考查基本不等式的运用,正确表示三角形的面积是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2+4x-2y=0,经过点P(-4,-2)的直线l与圆C相交所得到的弦长为2,则直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)已知圆C的方程为x2+y2+2x-2y+1=0,当圆心C到直线kx+y+4=0的距离最大时,k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=r2,在圆C上经过点P(x0,y0)的切线方程为x0x+y0y=r2.类比上述性质,则椭圆
x2
4
+
y2
12
=1
上经过点(1,3)的切线方程为
x+y-4=0
x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2-2x+ay+1=0,且圆心在直线2x-y-1=0.
(1)求圆C的标准方程.
(2)若P点坐标为(2,3),求圆C的过P点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
(a>b>0)
的右顶点和上顶点.
(1)求椭圆T的方程;
(2)是否存在斜率为
1
2
的直线l与曲线C交于P、Q两不同点,使得
OP
OQ
=
5
2
(O为坐标原点),若存在,求出直线l的方程,否则,说明理由.

查看答案和解析>>

同步练习册答案