精英家教网 > 高中数学 > 题目详情
5.复数z=$\frac{3+i}{1-i}$(i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简,求出复数在复平面内对应点的坐标得答案.

解答 解:∵z=$\frac{3+i}{1-i}$=$\frac{(3+i)(1+i)}{(1-i)(1+i)}=\frac{2+4i}{2}=1+2i$,
∴复数z=$\frac{3+i}{1-i}$在复平面内对应的点的坐标为(1,2),位于第一象限.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.侧棱和底面边长都是3$\sqrt{2}$的正四棱锥的外接球半径是36π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥P-ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E、F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C的方程为(x+2)2+y2=4,点M在圆C上运动,点N的坐标是(2,0).
(1)若线段MN的中点形成的轨迹为G,求轨迹G的方程;
(2)点P在直线x=8上,过P点引轨迹G的两条切线PA、PB,切点为A、B,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,由直线x=a,x=a+1(a>0),y=x2及x轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即a2<${∫}_{a}^{a+1}$x2dx<(a+1)2.类比之,?n∈N*,$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<A<$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{2n-1}$恒成立,则实数A等于(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.ln2D.ln$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“a>3”是“函数f(x)=ax+3在(-1,2)上存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列4个函数:①f(x)=sinx;②f(x)=2x;③f(x)=$\frac{1}{x-1}$;④f(x)=lnx,则满足对定义域D内的?x∈D,?y∈D,使f(x)=-f(y)成立的函数序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.命题“若x=y,则sinx=siny”的否命题为真命题
B.“直线x-ay=0与直线x+ay=0互相垂直”的充分条件是“a=1”
C.命题“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1>0”
D.命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1或x≠-1,则x2≠1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,已知圆O:x2+y2=16,点P(1,2),若M,N为圆O上不同的两点,且PM⊥PN,则MN的取值范围是[3$\sqrt{3}$-$\sqrt{5}$,3$\sqrt{3}$+$\sqrt{5}$].

查看答案和解析>>

同步练习册答案