精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2,(x∈[-2,2]),g(x)=a2sin(2x+
π
6
)+3a,x∈[0,
π
2
]),?x1∈[-2,2],总?x0∈[-0,
π
2
],使得g(x)=f(x1)成立,则实数a的取值范围是
 
分析:先分别求出函数f(x)与函数g(x)的值域,再根据?x1∈[-2,2],总?x0∈[0,
π
2
],使得g(x0)=f(
x
 
1
)
成立得到函数
f(x)的值域是函数g(x)的值域的子集,建立不等关系即可.
解答:解:∵x∈[0,
π
2
]

∴sin(2x+
π
6
∈[-
1
2
,1]

g(x)=a2sin(2x+
π
6
)+3a,x∈[0,
π
2
]
的值域为[3a-
1
2
a2,a2+3a]
而f(x)=x2,(x∈[-2,2])的值域为[0,4]
∵?x1∈[-2,2],总?x0∈[0,
π
2
],使得g(x0)=f(
x
 
1
)
成立
∴[0,4]⊆[3a-
1
2
a2,a2+3a]
3a- 
1
2
a2≤0
a2+3a≥4
,解得a∈(-∞,-4]∪[6,+∞),
故答案为(-∞,-4]∪[6,+∞)
点评:本题主要考查了函数的值域,以及存在性问题的应用,属于中档题,是高考中偶尔出现的好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案