精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(I)求函数f(x)的最小正周期及单调递增区间;
(II)设函数数学公式,求g(x)在区间[0,π]上的最小值及取得最小值时x的值.

解:(I)∵
=
=
∴函数的最小正周期



∴函数f(x)的单调递增区间为k∈Z.
(II)∵
而0≤x≤π,所以
∴当,即x=0时,
g(x)取得最小值-+2=
∴g(x)在区间[0,π]上的最小值为,取得最小值时x的值为0
分析:(I)先利用二倍角公式和两角差的正弦公式,将函数f(x)化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后利用复合函数单调性结合正弦函数图象求函数的单调区间
(II)先求函数g(x)的解析式,同样化为y=Asin(ωx+φ)的形式,先求内层函数的值域,再结合正弦函数图象求函数的值域即可
点评:本题考查了二倍角公式的运用,两角差的正弦公式及其应用,三角函数的图象和性质,复合函数的单调性和值域
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e|lnx|+a|x-1|(a为实数)
(I)若a=1,判断函数f(x)在区间[1,+∞)上的单调性(不必证明);
(II)若对于任意的x∈(0,1),总有f(x)的函数值不小于1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-
12
)的定义域为(n,n+1)(n∈N*),f(x)的函数值中所有整数的个数记为g(n).
(1)求出g(3)的值;
(2)求g(n)的表达式;
(3)若对于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n为组合数)都成立,求实数l的最小值.

查看答案和解析>>

科目:高中数学 来源:2012届山西大学附中高三4月月考理科数学试卷(解析版) 题型:解答题

(本小题共12分)已知函数的 部 分 图 象如 图 所示.

(I)求 函 数的 解 析 式;

(II)在△中,角的 对 边 分 别 是,若的 取 值 范 围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=e|lnx|+a|x-1|(a为实数)
(I)若a=1,判断函数f(x)在区间[1,+∞)上的单调性(不必证明);
(II)若对于任意的x∈(0,1),总有f(x)的函数值不小于1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x(x-
1
2
)的定义域为(n,n+1)(n∈N*),f(x)的函数值中所有整数的个数记为g(n).
(1)求出g(3)的值;
(2)求g(n)的表达式;
(3)若对于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n为组合数)都成立,求实数l的最小值.

查看答案和解析>>

同步练习册答案