精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2﹣1,g(x)=a|x﹣1|.
(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数a的取值范围;
(2)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(3)求函数h(x)=|f(x)|+g(x)在区间[﹣2,2]上的最大值(直接写出结果,不需给出演算步骤).
解答:解:(1)方程|f(x)|=g(x),即|x2﹣1|=a|x﹣1|,
变形得|x﹣1|(|x+1|﹣a)=0,
显然,x=1已是该方程的根,
从而欲原方程只有一解,即要求方程|x+1|=a,
有且仅有一个等于1的解或无解,
结合图形得a<0.
(2)不等式f(x)≥g(x)对x∈R恒成立,即(x2﹣1)≥a|x﹣1|(*)对x∈R恒成立,
①当x=1时,(*)显然成立,此时a∈R;
②当x≠1时,(*)可变形为,令
因为当x>1时,φ(x)>2,当x<1时,φ(x)>﹣2,
所以φ(x)>﹣2,故此时a≤﹣2.
综合①②,得所求实数a的取值范围是a≤﹣2.
(3)因为h(x)=|f(x)|+g(x)=|x2﹣1|+a|x﹣1|=
 当时,结合图形可知h(x)在[﹣2,1]上递减,在[1,2]上递增,
且h(﹣2)=3a+3,h(2)=a+3,
经比较,此时h(x)在[﹣2,2]上的最大值为3a+3.
时,
结合图形可知h(x)在[﹣2,﹣1],上递减,
,[1,2]上递增,且h(﹣2)=3a+3,h(2)=a+3,
经比较,知此时h(x)在[﹣2,2]上的最大值为3a+3.
时,
结合图形可知h(x)在[﹣2,﹣1]14,15上递减, 在,[1,2]上递增,且h(﹣2)=3a+3,h(2)=a+3,
经比较,知此时h(x)在[﹣2,2]上的最大值为a+3.
时,
结合图形可知h(x)在上递减, 在上递增,
且h(﹣2)=3a+3<0,h(2)=a+3≥0,
经比较,知此时h(x)在[﹣2,2]上的最大值为a+3.
时,结合图形可知h(x)在[﹣2,1]上递减,在[1,2]上递增,
故此时h(x)在[﹣2,2]上的最大值为h(1)=0.
综上所述,当a≥0时,h(x)在[﹣2,2]上的最大值为3a+3;
当﹣3≤a<0时,h(x)在[﹣2,2]上的最大值为a+3;
当a<﹣3时,h(x)在[﹣2,2]上的最大值为0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案