精英家教网 > 高中数学 > 题目详情
5.解关于x的不等式(m-2)x>1-m.

分析 通过对m分类讨论,直接求解不等式即可.

解答 解:当m=2时,不等式(m-2)x>1-m化为:0•x>-1,此时x∈R.解集为:R.
当m<2时,关于x的不等式(m-2)x>1-m的解为:x<$\frac{1-m}{m-2}$.解集为:{x|x<$\frac{1-m}{m-2}$,m<2}.
当m>2时,关于x的不等式(m-2)x>1-m的解为:x>$\frac{1-m}{m-2}$.解集为:{x|x>$\frac{1-m}{m-2}$,m>2}

点评 本题考查分类讨论求解不等式的解集,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中,a1=1,前n项和为Sn=$\frac{n+2}{3}$an
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{n}^{2}+2{a}_{n}}$,数列{bn}的前n项和Tn,证明:Tn<$\frac{2}{3}$;
(3)设cn=$\frac{2n+1}{{a}_{n}^{2}}$,问:是否存在常数M,使得对所有的n∈N*,都有c1+c2+…+cn<M.若存在,求M的最小值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=2(log2x)2+2alog2$\frac{1}{x}$+b,已知x=$\frac{1}{2}$时,f(x)有最小值-8,
(1)求a与b的值;
(2)求满足f(x)>0的x的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=acos2x-bsinxcosx-$\frac{a}{2}$的最大值是$\frac{1}{2}$,且f($\frac{π}{3}$)=$\frac{\sqrt{3}}{4}$,则f(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{4}$或0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=x2+ax+$\frac{1}{x}$在($\frac{1}{2}$,+∞)上是增函数,则a的取值范围是(  )
A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于定义在R上的函数f(x),有下述四个命题;
①若y=f(x)是奇函数,则y=f(x-1)的图象关于点A(1,0)对称;
②若函数y=f(x+1)与y=f(1-x)的图象关于直线x=1对称;
③如果函数y=f(x)满足f(x+1)=f(1-x),f(x+3)=f(3-x),那么该函数以4为周期.
其中正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.A${\;}_{2n}^{3}$=2A${\;}_{n+1}^{4}$,则n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列点中,在以A(1,-1)为圆心,4为半径的圆的内是(  )
A.(5,-7)B.(2,-1)C.(8,-1)D.(2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某债券市场发行三种债券,甲种面值为100元,一年到期本息和为103元,乙种面值为50元,半年到期本息和为51.4元,丙种面值为100元,但买入价为97元,一年到期本息和为100元,作为购买者,分析这三种债券的收益,从小到大排列为(  )
A.乙,甲,丙B.甲,丙,乙C.甲,乙,丙D.丙,甲,乙

查看答案和解析>>

同步练习册答案