精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+ax+1-a,若x∈[-1,2]时,f(x)≥0恒成立,求实数a的取值范围.
分析:利用二次函数的图象和性质,分类求函数在区间[-1,2]的最小值,根据不等式f(x)≥0恒成立,求出实数a的取值范围.
解答:解:函数f(x)=x2+ax+1-a的图象开口向上,对称轴方程为x=-
a
2

当-
a
2
<-1即a>2时,f(x)在[-1,2]上单调递增,∴f(-1)=2-2a≥0⇒a≤1,∴a∈∅;
当-1≤-
a
2
≤2即-4≤a≤2时,f(x)在[-1,-
a
2
]上单调递减,在[-
a
2
,2]上单调递增,
∴有f(-
a
2
)=-
1
4
a2-a+1≥0⇒-2
2
-2≤a≤2
2
-2

∴此时-4≤a≤2
2
-2;
当-
a
2
>2即a<-4时,f(x)在[-1,2]上单调递减,
∴有f(2)=5+a≥0⇒-5≤a<-4;
综上得实数a的取值范围是-5≤a≤2
2
-2.
点评:本题主要考查二次函数的图象和性质,要注意分别讨论对称轴和区间之间的关系从而确定函数的最小值,体现了分类讨论思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案