精英家教网 > 高中数学 > 题目详情

四棱锥P-ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P-ABCD的体积;

(Ⅱ)证明PA⊥BD.

解:(Ⅰ)图略,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P-ABCD的体积

VP-ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为 所以PA⊥BD.

解法二:图略,连结AO,延长AO交BD于点F.能过计算可得EO=3,AE=2

又知AD=4,AB=8,

所以  Rt△AEO∽Rt△BAD.      得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以  AF⊥BD.

因为  直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PD、PC、BC的中点.
(I)求证:PA∥平面EFG;
(II)求平面EFG⊥平面PAD;
(III)若M是线段CD上一点,求三棱锥M-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2
2
,PA=2,求:
(1)三角形PCD的面积;
(2)异面直线BC与AE所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=
12
,AD=1.
(I)求证:CD⊥平面PAC
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,M为AB的中点.
(1)求证:BC∥平面PMD;
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.
(1)求证:PA∥平面MDB;
(2)求证:AD⊥平面PQB;
(3)若平面PAD⊥平面ABCD,且M为PC的中点,求四棱锥M-ABCD的体积.

查看答案和解析>>

同步练习册答案