精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-6x2-1.
(1)求函数f(x)的单调区间与极值;
(2)设g(x)=f(x)-c,且?x∈[-1,2],g(x)≥2c+1恒成立,求c的取值范围.
分析:(1)f(x)=x3-6x2-1,知f′(x)=3x2-12x,由f′(x)=3x2-12x=0,得x1=0,x2=4,由此列表讨论,能求出函数f(x)的单调区间与极值.
(2)由f(x)-c≥2c+1,知3c+1≤f(x)在[-1,2]上恒成立,由导数性质求出x∈[-1,2]时,f(x)min=f(2)=-17.由此能求出c的取值范围.
解答:解:(1)∵f(x)=x3-6x2-1,
∴f′(x)=3x2-12x,
由f′(x)=3x2-12x=0,得x1=0,x2=4,
列表讨论,得:
 x  (-∞,0)  0  (0,4)  4  (4,+∞)
 f′(x) +  0 -  0 +
 f(x)  极大值  极小值
由表知:f(x)的增区间为(-∞,0),(4,+∞),减区间为(0,4).
当x=0时,f(x)取极大值f(0)=-1;
当x=4时,f(x)取极小值f(4)=64-6×16-1=-33.
(2)∵g(x)=f(x)-c,且?x∈[-1,2],g(x)≥2c+1恒成立
∴f(x)-c≥2c+1对?x∈[-1,2]恒成立,
∴3c+1≤f(x)在[-1,2]上恒成立.
∵由f′(x)=3x2-12x=0,得x1=0∈[-1,2],x2=4∉[-1,2],舍,
f(-1)=-1-6-1=-8,
f(0)=0-0-1=-1,
f(2)=8-24-1=-17,
∴x∈[-1,2]时,f(x)min=f(2)=-17,
∴3c+1≤-17,
∴c≤-6.
故c的取值范围是(-∞,-6].
点评:本题考查函数的单调性与极值的求法,考查满足条件的实数的取值范围的求法.解题时要认真审题,仔细解答,注意函数恒成立问题的等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案