精英家教网 > 高中数学 > 题目详情
用样本频率估计总体分布的过程中,下列说法正确的是  (  )

    A.总体容量越大,估计越精确

    B.总体容量越小,估计越精确

    C.样本容量越大,估计越精确

    D.样本容量越小,估计越精确

   

思路解析:由于随着样本容量的增加,频率折线图会越来越接近于总体密度曲线。而总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。因此样本容量越大,估计越精确。

    答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如右图:
(ⅰ)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表.据此,计算这100名学生身高数据的期望μ及标准差φ(精确到0.1);
(ⅱ)若总体服从正态分布,以样本估计总体,据此,估计该年级身高在(158.6,181.4)范围中的学生的人数.
(Ⅲ)如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
身高达标 身高不达标 总计
积极参加体育锻炼 40
不积极参加体育锻炼 15
总计 100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K2=
π(ac-bd)2
(a+b)(c+d)(a+c)(b+d)
,参考数据:
P(K2≥k) 0.40 0.25 0.15 0.10 0.05 0.025
k 0.708 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某校从高一年级学生中随机抽取60名学生,将其期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到如下频率分布直方图.
(Ⅰ)求分数在[70,80)内的频率;
(Ⅱ)根据频率分布直方图,估计该校高一年级学生期中考试数学成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到如下频率分布直方图.
(Ⅰ)求图中a的值
(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试福建省高考理科数学 题型:解答题

(本小题满分13分)

某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准

(I)已知甲厂产品的等级系数X1的概率分布列如下所示:

且X1的数字期望EX1=6,求a,b的值;

(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:

             3   5   3   3   8   5   5   6   3   4

             6   3   4   7   5   3   4   8   5   3

8   3   4   3   4   4   7   5   6   7

用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.

     在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.

注:(1)产品的“性价比”=

   (2)“性价比”大的产品更具可购买性.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省海口市高三下学期高考调研考试理科数学 题型:解答题

(本小题满分12分)

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);

( II )根据有关规定,成绩小于16秒为达标.

(ⅰ)用样本估计总体,某班有学生45人,设

为达标人数,求的数学期望与方差.

    (ⅱ)如果男女生使用相同的达标标准,则男女

生达标情况如下表

性别

是否达标

合计

达标

______

_____

不达标

_____

_____

合计

______

______

 

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

 

查看答案和解析>>

同步练习册答案