精英家教网 > 高中数学 > 题目详情
已知y=f(x)为偶函数,且在[0,+∞)上是减函数,则f(1-x2)的增函数区间为
(-∞,-1],[0,1]
(-∞,-1],[0,1]
分析:y=f(x)是偶函数,且在[0,+∞)上是减函数,所以y=f(x)在(-∞,0]上是增函数.再利用复合函数的意义,可求其单调增区间.
解答:解:由题意,y=f(x)是偶函数,且在[0,+∞)上是减函数,所以
y=f(x)在(-∞,0]上是增函数.
解1-x2 =0得x=1或x=-1
当x≤-1时,y=1-x2是增函数且1-x2<0,所以f(1-x2)是增函数.
当0<x≤1时,y=1-x2是减函数且1-x2>0,所以f(1-x2)也是增函数.
故答案为(-∞,-1],[0,1]
点评:本题以函数为载体,考查复合函数的单调性,关键理解复合函数的含义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

20、已知函数f(x)的定义域为R,若f(x)恒不等于零,且对任意的实数x,y都有f(x+y)+f(x-y)=2f(x)•f(y),
(1)求证f(0)=1.
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)(x∈R,且x≠0),对任意非零实数x1、x2满足f(x1+x2)=f(x1x2),
(1)求f(1)+f(-1)的值;  
(2)判断函数y=f(x)的奇偶性;
(3)已知y=f(x)在(0,+∞)上为增函数且f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判断y=f(x)的奇偶性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数y=f(x)(x∈R,且x≠0),对任意非零实数x1、x2满足f(x1+x2)=f(x1x2),
(1)求f(1)+f(-1)的值; 
(2)判断函数y=f(x)的奇偶性;
(3)已知y=f(x)在(0,+∞)上为增函数且f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市江阴市成化高中高考数学模拟试卷2(理科)(解析版) 题型:解答题

设函数y=f(x)(x∈R,且x≠0),对任意非零实数x1、x2满足f(x1+x2)=f(x1x2),
(1)求f(1)+f(-1)的值;  
(2)判断函数y=f(x)的奇偶性;
(3)已知y=f(x)在(0,+∞)上为增函数且f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

同步练习册答案