精英家教网 > 高中数学 > 题目详情
(2010•湖北模拟)在△ABC中,内角A、B、C所对的边分别为a,b,c,其外接圆半径为6,
b
1-cosB
=24,sinA+sinC=
4
3

(1)求cosB;
(2)求△ABC的面积的最大值.
分析:(1)利用正弦定理及条件
b
1-cosB
=24,可得2(1-cosB)=sinB,再利用平方关系,从而可求得cosB;
(2)利用正弦定理及条件sinA+sinC=
4
3
,可得a+c=16,利用面积公式表示面积,借助于基本不等式可求△ABC的面积的最大值.
解答:解:(1)
b
1-cosB
=24⇒
2×6sinB
1-cosB
=24
∴2(1-cosB)=sinB  (3分)
∴4(1-cosB)2=sin2B=(1-cosB)(1+cosB)
∵1-cosB≠0,
∴4(1-cosB)=1+cosB,
∴cosB=
3
5
,(6分)
(2)∵sinA+sinC=
4
3

a
12
+
c
12
=
4
3
,即a+c=16.
又∵cosB=
3
5
,∴sinB=
4
5
.(8分)
∴S=
1
2
acsinB=
2
5
ac≤
2
5
(
a+c
2
)
2
=
128
5
.(10分)
当且仅当a=c=8时,Smax=
128
5
.(12分)
点评:本题以三角形为载体,考查正弦定理的运用,考查基本不等式,关键是边角之间的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(1)证明:AC⊥PB;
(2)证明:PB∥平面AEC;
(3)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)等比数列{an}的公比为q,则“a1>0,且q>1”是“对于任意正自然数n,都有an+1>an”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)△ABC内接于以O为圆心,半径为1的圆,且3
OA
+4
OB
+5
OC
=
0
,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)已知数列|an|满足:an=n+1+
8
7
an+1
,且存在大于1的整数k使ak=0,m=1+
8
7
a1

(1)用k表示m(化成最简形式);
(2)若m是正整数,求k与m的值;
(3)当k大于7时,试比较7(m-49)与8(k2-k-42)的大小.

查看答案和解析>>

同步练习册答案