精英家教网 > 高中数学 > 题目详情
设△ABC的三边a,b,c满足关系:a2+b2=c2,当n>2,且n∈N*时,求证:an+bn<c2n.

证明:∵a2+b2=c2,∴a<c,b<c.

∴an-2<cn-2,bn-2<cn-2.

∴an+bn=a2·an-2+b2·bn-2

<a2·cn-2+b2·cn-2

=cn-2(a2+b2)=cn,

即an+bn<c2n.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1)

(1)若
m
n
,求sinx•cosx的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角B的取值集合为M,当x∈M时,求函数f(x)=
m
n
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,其中ω是使f(x)能在x=
π
3
处取得最大值时的最小正整数.(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a,b,c满足b2=ac且边b所对的角θ的取值集合为A,当x∈A时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,
3
sin2x),x∈R.
(1)若f(x)=0且x∈(-
π
2
,0),求tan2x;
(2)设△ABC的三边a,b,c依次成等比数列,试求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三边a,b,c所对的角分别为A,B,C,
a-c
b-c
=
sin(A+C)
sinA+sinC

(Ⅰ)求A的值;
(Ⅱ)求函数f(x)=2sin(x+
A
2
)cos(x+
A
2
)+2
3
cos2(x+
A
2
)-
3
的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
m
=(
3
sinωx,cosωx),
n
=(cosωx,-cosωx),已知函数f(x)=
m
n
(ω>0)的周期为
π
2

(1)求ω的值、函数f(x)的单调递增区间、函数f(x)的零点、函数f(x)的对称轴方程;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

同步练习册答案