精英家教网 > 高中数学 > 题目详情
已知0<α<
π
2
<β<π,tan
α
2
=
1
2
,cos(α-β)=
2
10

(1)求sinα的值;
(2)求β的值.
分析:(1)利用二倍角公式求出tanα,利用同角三角函数的基本关系求出 sin α 的值.
(2)根据角的范围求出sin(α-β),可得tan(α-β)的值,进而求得tanβ 的值,根据 β范围求出 β 的大小.
解答:解:(1)∵0<α<
π
2
<β<π,tan
α
2
=
1
2
,cos(α-β)=
2
10

∴tanα=
2tanα
1-tan2α
=
4
3
.∵tanα=
sinα
cosα
,sin2α+cos2α=1,
∴sin α=
4
5
,cos α=
3
5

(2)∵cos(α-β)=
2
10
0<α<
π
2
<β
,∴sin(α-β)=-
7
2
10

∴tan(α-β)=
sin(α-β)
cos(α-β)
=-7=
tanα-tanβ
1+tanαtanβ
=
4
3
-tanβ
1+
4
3
tanβ

∴tanβ=-1,∴β=
4
点评:本题考查同角三角函数的基本关系,诱导公式的应用,两角和差的三角公式的应用,要特别注意三角函数值的符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知0<β<α<
π
2
,且cosα=
3
5
cos(α-β)=
12
13
,则cosβ=
56
65
56
65

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(c+1)x+c(c∈R).
(1)解关于x的不等式f(x)<0;
(2)当c=-2时,不等式f(x)>ax-5在(0,2)上恒成立,求实数a的取值范围;
(3)设g(x)=f(x)-ax,已知0<g(2)<1,3<g(3)<5,求g(4)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
+2
6
sinxcosx-2
2
sin2x,(x∈R)

(I)对f(x)的图象作如下变换:先将f(x)的图象向右平移
π
12
个单位,再将横坐标伸长到原来的2倍,纵坐标不变,得到函数g(x)的图象,求g(x)的解析式;
(II)已知0<x1
π
2
x2<π
,且g(x1)=
6
2
5
,g(x2)=2
,求tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴一模)已知0<x<
π
2
,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 0<x<2,则函数y=x(1-
x
2
)
的最大值是(  )

查看答案和解析>>

同步练习册答案